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Background and objective: In the state-of-the-art image transmission methods, multiple large medical 

images are usually transmitted one by one which is very inefficient. The objective of our study is to 

devise an effective and efficient multiple transmission optimization scheme for medical images called 

M TO via analyzing the visual content of the multiple images based on the characteristics of a recourse- 

constraint mobile telemedicine system ( MTS ) and the medical images; 

Methods: To better facilitate the efficient M TO processing, two enabling techniques, i.e., 1) NIB grouping 

scheme , and 2) adaptive RIB replicas selection are developed. Given a set of transmission images ( �), the 

correlation of these transmission images is first explored, the pixel resolutions of the corresponding MIB s 

keep high, the NIB s are grouped into k clusters based on the visual similarity in which the k RIB s are 

obtained. An optimal pixel resolution for the RIB s is derived based on the current network bandwidth and 

their corresponding areas, etc. Then, the candidate MIB s and the k RIB s are transmitted to the receiver 

node based on their transmission priorities. Finally, the IB s are reconstructed and displayed at the receiver 

node level for different users. 

Results: The experimental results show that our approach is about 45% more efficient than the state-of- 

the-art methods, significantly minimizing the response time by decreasing the network communication 

cost while improving the transmission throughput; 

Conclusions: Our proposed M TO method can be seamlessly applied in a recourse-constraint MTS environ- 

ment in which the high transmission efficiency and the acceptable image quality can be guaranteed. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

With the explosive growth of the number of medical images

nd the popularity of location-based service ( LBS ), location-based

edical image retrieval and browsing has been paid much at-

ention to recently in mobile telemedicine systems ( MTS ) [1] .

elemedicine is the use of telecommunication and information

echnologies to provide clinical health care at a distance. It helps

liminate distance barriers and can improve access to medical ser-

ices that would often not be consistently available in distant ru-

al communities. Although medical image retrieval has been ex-

ensively studied, the state-of-the-art methods mainly focus on a

ingle PC [2] or a traditional network environment [3] . A mobile

elemedicine system provides us with a type of mobile and flexi-

le computing infrastructure in which different users (e.g., physi-
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ians) in different places can obtain their desired information from

he MTS conveniently. For mobile retrieval of large medical images,

owever, the network transmission cost will in large determine the

otal response time, especially in the rural or remote areas since

he 4G mobile network services in these areas have not been pro-

ided. So the reduction of the transmission cost is very critical to

he retrieval performance improvement. To achieve this, a scalable,

igh-throughput, location-based transmission scheme is generally

equired. 

Although considerable amount of research efforts have been

arried out on image transmission [4] , most of them focus on

wo ways: 1) design of transmission protocol [5–9] ; 2) image data

ompression [10–22] . The data transmission efficiencies of the two

ays above are unsatisfactory because the response time is linearly

ncreasing with the size of the transferred file. Moreover, for the

ransmission of several images, they are usually transferred one by

ne. There is no existing study on the multiple image transmis-

ion performance improvement from the perspective of the image

atching, especially in the MTS environment. So to further speed

http://dx.doi.org/10.1016/j.cmpb.2017.04.002
http://www.ScienceDirect.com
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Fig. 1. Two different medical images with MUAs. 
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up the transmission processing and improve user experiences, the

paper proposes a Multiple Transmission Optimization method for

large medical images 1 in the MTS environment, called the M TO , by

exploring the content correlation of the transmission images. 

The motivations of the M TO scheme are based on the following

three key observations: 

- Compared with other images, the backgrounds of medical images

are relatively simple yet similar, which motivates us to identify and

extract the medically useful areas (MUA) in medical images conve-

niently. The MUAs in Fig. 1 are high-lighted by the blue solid lines.

Fig. 1 shows two illustrative medical images (a) and (b), which are

equally partitioned into some blocks called image block(IB) by the

red dash lines. For image (a), the color of the IB a 61 is visually

similar to that of b 63 , b 66 and b 55 . In addition, a 62 , a 63 , and a 64

are similar to b 65 based on visual similarity computation. Mean-

while, b 51 , b 52 , b 56 , b 61 and b 62 are also visually similar with each

other. It is obvious that the total transmission overhead can be sig-

nificantly reduced if the visually similar IBs can be represented by

a representative IB(RIB) that is transmitted only once. 

- Since any medical image includes some MUAs, the total image data

size can be effectively reduced if the pixel resolution of the non-

MUA part is moderately adjusted so that image examining can not

be greatly affected. Thus, the total transmission cost is expected to

be significantly decreased accordingly. 

- The MTS is an image transmission-intensive application in which

the mobile wireless network ( MWN ) bandwidth is usually unsta-

ble and limited, especially in the remote or rural areas. The trans-

mission efficiency is very low. In this case, to significantly im-

prove the transmission performance, it is urgent to devise a multi-

transmission optimization approach. Moreover, it is acceptable for

users (e.g., physicians) to improve the image transmission perfor-

mance by moderately sacrificing the image quality (e.g., minor im-

age distortion, etc). 

The basic idea behind the M TO scheme works as follows. In

the preprocessing step, for each image I i , its corresponding MUAs

are automatically identified and extracted by the discriminately

trained deformable part model-based approach [27] . The images

are then equally partitioned into some IB s that are placed in a

slave node as replicas with different pixel resolutions and trans-

mission priorities. As the IB s for the non-MUA parts of the im-

ages, denoted as NIB , are critically important to the performance

improvement of the multiple image transmission optimization in

which they can be approximately represented by their correspond-

ing RIB s, their pixel resolutions are adjusted moderately based on

the network bandwidth and their areas, etc. Their corresponding

transmission priorities are lower than the IB s of the MUAs (called
1 By default, the medical images in this paper refer to the grayscale image. 

 

s  

t  
IB ) such that the main part (i.e., MUA) of the image can be trans-

itted and displayed in priority. Once the pre-processing step is

ompleted, the next step is to perform the multiple transmission

ptimization processing for medical images. Given a set of trans-

ission images ( �), the correlation of these transmission images

s first explored, the pixel resolutions of the corresponding MIB s

eep high, the NIB s are grouped into k clusters by AP-clustering

lgorithm [29] based on the visual similarity in which the k RIB s

re obtained. An optimal pixel resolution for the RIB s is derived

ased on the current network bandwidth and their corresponding

reas, etc. Then, the candidate MIB s and the k RIB s are transmitted

o the receiver node based on their transmission priorities. Finally,

he IB s are reconstructed and displayed at the receiver node level

or different users. 

The challenges of designing the high performance multi-

ransmission optimization processing of medical images include

he four main aspects: 1) How to group the medical images to-

ether : since for the NIB s from the transmission images, there exist

ome visually similar NIB s, which motivate us to cluster the similar

IB s together; 2) High computation cost in medical image trans-

ission : most of medical images are characterized by high pixel

esolution, high-dimensional , and large-scale . So, the transmission

osts of such medical images are very high; 3) Resource-Constraint

WN : the power capacities of the mobile devices are very limited.

he display resolutions of such mobile devices are often low. Fur-

hermore, the bandwidth in the MWN is limited, how to transmit

uch a batch of large images simultaneously in the resource- con-

traint MWN is challenging; 4) Instability and heterogeneity of the

TS : the nodes in the MWN are instable, that means, some nodes

ay be down or connected intermittently to the network. Further,

he bandwidth between any two nodes may vary with time. There

s no guarantee that the total response time of each transmission

ill be similar. To address the above challenges, an efficient multi-

ransmission optimization scheme for medical images ( M TO ) in the

ecourse-constraint MTS environment is proposed. To the best of

ur knowledge, this is the first study on the multiple transmission

ptimization for medical images. 

This paper is structured in the followings. Section 2 pro-

ides the background of the related techniques. Section 3 entails

ethodologies that are employed in this study as well as the M TO

ethod. After that, Section 4 puts forward the experimental re-

ults and discussions whereas the conclusions are summarized in

ection 5 . 

. Background 

In this section, the paper reviews some background of image

ata transmission techniques that have been extensively studied

or several decades [4] . The state-of-the-art methods can be mainly

ivided into two categories: 1) transmission protocol design [5–9] ;

nd 2) image data encoding and compression [10–22] . 

In the first category, Turner and Peterson [5] first proposed

 wireless image data transmission method from end to end.

ohn et al. [6] presented a fast lossy Internet image transmission

cheme(FLIIT) for compressed images which eliminates retransmis-

ion delays by strategically shielding important portions of the im-

ge with redundancy bits. Compared with the traditional TCP pro-

ocol, Raman et al. [7] designed a lossy image transmission proto-

ol (ITP) which is more suitable for image data transmission. Due

o the high packet error rates and the need for retransmission, re-

ently Aziz and Pham [9] have designed a novel architecture and

rotocol for energy efficient image processing and communication

ver wireless sensor networks. 

In the second category, Kim and Song [10] presented a pyramid-

tructured progressive image transmission method using quantiza-

ion error delivery in transform domains. Chang et al. [11] pro-
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Table 1. 

Frequently used symbols. 

Symbol Description 

� a set of transmission images 

I i the i th transmission image and I i ∈ �
� a NIB set for the transmission images 

U a set of submission users 

IB i the i th image block 

MIB ij the j th image block of the MUAs in the i th image 

NIB ij the j th image block of the non-MUA part in the i th image 

IBG k the k th image block group 

RIB(k) the representative image block in the k th IBG 

| ●| the number of ●
MUA j the j th MUA in a medical image and j ∈ [1, | MU A |] 

U i the i th user and i ∈ � 1, | U | � 
N the non-MUA part of the image 

D L , D U the lower and upper bounds of the dots per inch, respectively 

E L, E U the lower and upper bounds of the bandwidth, respectively 

αi the number of MIBs in the i th image 

β i the number of RIBs in the i th image 

�ini initial granularity value for the pixel resolution 

�opt optimal granularity value for the pixel resolution 

δ granularity value for the size of image blocking 

Fig. 2. The three layer architecture of a MWN . 
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osed a new scheme of progressive image transmission (PIT) based

n bit-plane method(BPM), which transmits the most significant

ortion of a picture, followed by less important parts. Hashimoto

t al. [12] presented a hierarchical image transmission system

or telemedicine using segmented wavelet transform and Golomb-

ice codes. Ruiz et al. [13] designed an image compression al-

orithm to support progressive image transmission. To achieve a

aster transmission performance, Chang et al. [14] improved the

PM method by color guessing called the guessing by neighbors

ethod which uses interleaved pixels for transmission. Chang and

u [15] proposed a color image progressive transmission method

y common bit map block truncation coding approach. Lin et al.

16] presented a compound image compression algorithm for real-

ime applications of computer screen image transmission. Sun and

iong [17] considered a progressive image transmission system

ver wireless channels by combining joint source-channel coding,

pace-time coding, and orthogonal frequency division multiplex-

ng. Chang et al. [18] design a strategic decomposition scheme for

daptive image transmission processing. Gao et al. [19] proposed a

obust image transmission scheme for wireless channels based on

ompressive sensing. Boluk et al. [20] designed a image transmis-

ion over wireless sensor networks. Arslan et al. [21] proposed a

eneralized unequal error protection LT codes for progressive data

ransmission. Xua et al. [22] proposed an adaptive FEC coding and

ooperative relayed wireless image transmission. 

Besides the above two categories, Maani et al. [23] designed a

arallel method to improve medical image transmission process-

ng. Recently, Hemalatha et al. [24] designed an energy-efficient

mage transmission in wireless multimedia sensor networks us-

ng block-based Compressive Sensing. Manimurugan and Narmatha

25] and Ai-Hai et al. [26] introduced several crypto-based algo- 

ithms for secure medical image transmission, respectively. 

In our previous work, Zhuang et al. [3] have explored the feasi-

ility of content-aware and multi-resolution-based medical image

ransmission scheme in which only two factors, namely, the image

ontent and the network bandwidth are considered to optimize the

ransmission processing. Based on the above transmission model,

huang et al. [28] designed a personalized social image transmis-

ion scheme in mobile wireless network. 

Different from the above state-of-the-art methods, the paper

roposes a multiple transmission optimization scheme for medical

mages via the analysis of the image contents in which a set of the

ransmission images are transmitted to receiver node in a batch

anner. To the best of our knowledge, this is the first attempt to

mprove the image transmission performance from the perspective

f the multiple transmission optimization. 

. Methodology 

.1. Preliminaries and problem definition 

First of all, the main symbol notations are summarized in

able 1 . 

efinition 1. A mobile wireless network (MWN) is a graph which is

epresented by a triplet: 

W N = 〈 N, E, T 〉 (1) 

where N refers to a set of nodes, E means a set of edges represent-

ng the network bandwidths for transmission at time T. 

In the above definition, as shown in Fig. 2 , due to the instabil-

ty and heterogeneity of the MWN environment, the band- width

f any two nodes in MWN may be different and variant with the

hange of the time. In addition, the data transmission distance in

he mobile wireless network is limited. 
efinition 2. The nodes in the MWN can be logically divided into

hree categories: the sender node(N S ), the slave node (N L ), and the

eceiver node(N R ), formally denoted as N = N S ∪ N L ∪ N R , where 

- N S is responsible for collecting and analyzing the receivers’ trans-

mission requests and the current network bandwidth to obtain an

optimal image block transmission pixel resolution; 

- N L is responsible for: 1) storing the IB replicas with different pixel

resolutions and transmission priorities, and 2) sending the images

to the receivers; 

- N R is responsible for: 1) images submission; 2) receiving, recon-

structing, and displaying the images for different receivers. 

As mentioned in Section 1 , for each image, in most cases, there

xist some salient objects that users are interested in. The regions

f such salient objects (i.e. organs) are called medically useful area

MUA) which can be preliminarily detected by the discriminately

rained deformable part model-based approach [27] . 

efinition 3. A medically useful area (MUA) in an image can be

odeled by a five-tuple: 

U A i = < i, S, pos, dpi, T P > (2)

where i is the ID number of the MUA, S is the area value of the

UA, pos refers to the position of the MUA in an image, dpi refers to

he dots per inch of the MUA, TP is transmission priority of the MUA. 

efinition 4. A non-MUA part of an image, denoted as N, can be

odeled by a two-tuple: 

 = < S, dpi > (3)
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Fig. 3. Two MUAs( A and C ) in a medical image ( δ = 6 × 6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 1 

The NIB grouping algorithm. 

Input : the NIB s in � , 

Output : the k IBG s 

1. the SM is calculated based on the visual similarity of the NIB s; 

2. the AP-cluster processing of the SM is conducted to obtain k IBG s; 

3. return the k IBG s; 
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where S is the area value of the N; dpi refers to the dots per inch

of the N; 

Definition 5. (I mage Block , IB ). An image block can be modeled as

a six-tuple: 

IB = <bid, pos, dpi, T P, I BGI D, uI D> (4)

where bid refers to the block ID, pos is the coordinate of the block

in the image, dpi is the dots per inch of the block, TP is the trans-

mission priority of the block, IBGID is the image block group(IBG) ID

where the IB belongs to, and uID means the user ID by which the

transmission image submits to. 

Based on Definitions 3 –5 , Fig. 3 illustrates that there are two

MUAs ( A and C ) and one N (i.e., B ) in the image in which the IBs

have been drawn by red dash lines and the granularity δ equals to

6 × 6. 

The problem can be defined as follows: given | U | user image

transmission requests at time T , a M TO processing of the | U | im-

ages is to simultaneously transmit the images to the receivers with

the minimal communication, I/O and CPU costs via uniformly an-

alyzing the visual contents of the images and the network band-

width. The goal of our proposed M TO method is to get a tradeoff

between the transmission efficiency in the MTS environment and

the acceptable image quality. 

3.2. Enabling techniques 

In this section, to better facilitate the multiple medical images

transmission processing, two enabling techniques are introduced:

1) NIB grouping scheme , and 2) adaptive RIB replicas selection . 

3.2.1. NIB grouping scheme 

Given a set of transmission images ( �), the first step of the M TO

processing is to analyze the correlated IBs from the non-MUA re-

gions in the images from � by exploring the visual similarity of

them. 

3.2.1.1. Blocking the images. In this preprocessing step, as described

in Definition 5 , a medical image is first equally partitioned into

some IBs among which there are two kinds of IBs (i.e., MIB and

NIB ) in terms of their positions in the image. 

Definition 6. ( MIB ). A MIB is an image block that intersects with a

MUA or is contained by a MUA, formally denoted as: 

MIB = { I B i j | I B i j ∩ MU A k 
 = ∅} (5)

where i is a row ID and i ∈ [1, α], j is a column ID and j ∈ [1, β], and

k ∈ [1,|MUA|]. 

Definition 7. ( NIB ). A NIB is an image block which is contained by

the non-MUA part (N) of an image, formally represented by: 

NIB = { I B i j | I B i j ∩ N = I B i j } (6)
where the definitions of i and j are same as that in Definition 6 . 

Based on the above Definitions (6 ) and ( 7 ), the MIB s in

ig. 3 are IB 22 , IB 23 , IB 24 , IB 25 , IB 32 , IB 33 , IB 34 , IB 35 , IB 42 , IB 43 , IB 44 ,

B 45 , IB 52 , IB 53 , IB 54 and IB 55 . The rest of the IB s are NIB s. 

.2.1.2. Grouping the NIBs. For the RIB s extracted from the trans-

ission images( �), their corresponding similarity matrix is first

alculated based on visual similarity distance which is defined in

efinition 8 . 

efinition 8. ( Similarity Matrix ). Given an NIB set ( �), its corre-

ponding similarity matrix(SM) is a matrix in which each element(d ij )

s the visual similarity ( i.e. , Euclidean distance) of the two NIBs ( i.e. ,

IB i and NIB j ), formally denoted as: 

M(�) = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

d 11 d 12 · · · d 1 | �| 
d 21 d 22 · · · d 2 | �| 

. . . 
. . . 

. . . 
. . . 

d | �| 1 d | �| 2 · · · d | �|| �| 

⎤ 

⎥ ⎥ ⎥ ⎦ 

(7)

where NIB i , NIB j ∈ � , and i, j ∈ [1,| �|]. 

For the NIB s of the transmission images, the k IBG s are obtained

y using the AP-cluster [29] in which the NIB s are visually similar.

lgorithm 1 shows the NIB grouping processing for obtaining the k

BG s. For the NIB s in each IBG , a cluster center NIB is denoted as a

epresentative NIB called RIB in this IBG. The RIB can approximately

epresent all of the NIB s in the corresponding IBG . The computa-

ional complexity is O (| �| 2 ). 

.2.2. Adaptive RIB replicas selection 

As mentioned before, since different pixel resolutions corre-

ponds to different data sizes of a medical image. The costs to

ransmit an unprocessed medical image with such a big size to

he receiver nodes is usually very high, especially in a MWN en-

ironment since the network bandwidth is limited and unstable.

ased on the above analysis, the subsection proposes an A daptive

 IB replica S election (ARS) scheme by comprehensively analyzing the

elationship of the image content and network bandwidth . 

.2.2.1. Choosing an optimal pixel resolution. The basic idea of the

RS method is that for a same medical image, the image with dif-

erent pixel resolutions can be transferred according to the vari-

nce of the network bandwidth. Specifically, with a high network

andwidth, a high- resolution image replica is transferred in a rea-

onable short period of time ( θ T ). On the contrary, in order to get

 shorter response time, a lower-resolution version can be sent

o the receiver node with a lower network bandwidth. Although

educing the pixel resolution of the whole image can reduce the

ransmission cost, some salient objects (i.e., MUA), however, can-

ot be clearly examined by physicians and may possibly lead to

he misdiagnosis. Therefore, compared with the resolution of the

on-MUA part of the image, the MUAs need to be presented with

 higher pixel resolution. 

Based on this consideration, the objective of the ARS method

s to get a tradeoff between the image quality, the transmission

ost under different resolutions and available network bandwidths

ith a constraint of the time threshold ( θ ). Specifically, let us
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Fig. 4. Comparison of the pixel resolutions of a same image. 
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rst denote the average resolution of the images in � as dpi ∈
 D L ,D U � , where D L and D U denote the lower and upper bounds of

he dots per inch ( dpi ) for images in �, respectively. Suppose that

 �| images are prepared for transmission, there are 
∑ | �| 

i =1 
αi MIB s

nd 

∑ | �| 
i =1 

βi NIB s that are grouped into k clusters in which k RIB s

re obtained. So, the 
∑ | �| 

i =1 
αi MIB s and k RIB s are prepared to be

ransmitted. The total area of the IBs (i.e., MIB s and RIBs ) and their

orresponding pixel resolutions are met in Eq. (8) : 

| �| 
 

i =1 

αi ∑ 

j=1 

(M I B i j .S · M I B i j .dp i 2 ) + 

k ∑ 

j=1 

(RI B j .S · RI B j .dp i 2 ) 

= 

( | �| ∑ 

i =1 

αi ∑ 

j=1 

MI B i j .S + 

k ∑ 

j=1 

RI B j .S 

) 

· dp i 2 (8) 

Solving Eq. (8) , the average dpi of the transmission images (i.e.,

mages in �) can be derived in Eq. (9) : 

pi = 

√ √ √ √ 

∑ | �| 
i =1 

∑ αi 

j=1 
( M I B i j .S ·M I B i j .dp i 2 ) + 

∑ k 
j=1 ( RI B j .S ·RI B j .d p i 2 ) ∑ | �| 

i =1 

∑ αi 

j=1 
( MI B i j .S ) + 

∑ k 
j=1 ( RI B j .S ) 

(9) 

In addition, the bandwidth of the j th edge is defined as: E C ∈ [ E L ,

 U ], where E L and E U are the lower and upper bounds of the band-

idth of the j th edge, respectively. Note that, the above bandwidth

s a theoretical value larger than the actual one. For the current

etwork bandwidth E C , Eq. (10) can be met: 

 c ∈ 

[
E L + 

(i − 1) · ( E U − E L ) 

�
, E L + 

i · ( E U − E L ) 

�

]
(10) 

Since i is an integer, so 

 = 

⌈
( E c − E L ) · �

E U − E L 
+ 1 

⌉
(11) 

here � •� refers to the integral part of ●. 

Based on the assumption that in most cases, the average dpi of

he transmission images ( �) is proportional to the network band-

idth ( E C ), so their corresponding dpi in � under E C can be de-

ived as follows: 

pi = D L + 

i · ( D u − D L ) 

�
(12) 

pi = D L + 

⌈
( E c − E L ) · �

E U − E L 
+ 1 

⌉
· D U − D L 

�
(13) 

here i ∈ [1, �]. 

In Eq. (13) , the whole image is regarded as an object to be pro-

essed. The pixel resolution of the whole image can be adjusted

ccording to the variance of the network bandwidth. This method,

owever, may reduce the pixel resolution of the MUAs so much

hat the user cannot clearly examine the image. Therefore, in the

reprocessing step, as shown in Fig. 4 (a), the MUAs in the image

re firstly identified by two blue dash rectangles manually, namely

UA 1 and MUA 2 . Fig. 4 (b) shows that the resolutions of the two

UAs in Fig. 4 (a) and (b) are likely unchanged, and the resolution

f the non-MUA part( N ) in Fig. 4 (b), however, is decreased dramat-

cally. 

IB.dpi = 

√ √ √ √ 

(∑ | �| 
i =1 

∑ αi 

j=1 
M I B i j .S + 

∑ k 
j=1 RI B j .S 

)
·
(
D L + 

⌈
( E c −E L ) ·�

E U −E L ∑ k 
j=1 RI B
Combining Eqs. (8) and ( 13 ), Eq. (14) can be derived: 

 

 

 

 

∑ | �| 
i =1 

∑ αi 

j=1 
(M I B i j .S · M I B i j .dp i 2 ) + 

∑ k 
j=1 (RI B j .S · RI B j .dp i 2 ) ∑ | �| 

i =1 

∑ αi 

j=1 
(MI B i j .S) + 

∑ k 
j=1 (RI B j .S) 

= D L + 

⌈
( E c − E L ) · �

E U − E L 
+ 1 

⌉
· D U − D L 

�
(14) 

Solving Eq. (14) , the dpi of the RIB s from the non-MUA part in

he images ( �) can be derived as: 

· D U −D L 
�

)2 − ∑ | �| 
i =1 

∑ αi 

j=1 
(M I B i j .S · M I B i j .dp i 2 ) 

(15) 

Based on the above analysis, if � is fixed, with increase of net-

ork bandwidth, the optimal transmission pixel resolution is in-

reasing accordingly. Meanwhile, if the bandwidth is fixed, when �

ncreases, the optimal transmission pixel resolution will decrease

ccordingly. 

.2.2.2. Modeling � and e C . Since the larger � is, the larger the

torage cost of the IB replicas is. To minimize the above total stor-

ge cost, � needs to be minimized. To obtain an optimal �, sup-

ose that the image transmission processing can be finished in a

ransmission deadline ( θ T ) set by user, so: 

 T = T 0 + 

Size (�) 

BW idth ( E c ) 
≤ θT (16) 

here 

- Size ( �) is the data size of the | �| transmission images, repre-

sented as: 

Size (�) = 

(∑ | �| 
i =1 

∑ αi 

j=1 
(M I B i j .S · M I B i j .dp i 2 ) 

+ 

∑ k 

j=1 
(RI B j .S · RI B j .dp i 2 ) 

)
· Bit · CR 

where Bit means color bit, and Bit can be 8, 16, or 24, CR is an

image compression ratio and CR ∈ [0,1]; 

- T 0 is the start-up transmission time; 

- BWidth ( E C ) is the actual network bandwidth, denoted as

BWidth ( E C ) = E C • TR , where E C is the current network band-

width, TR means the attenuation rate of the bandwidth and

TR ∈ [0,1]. 
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Fig. 5. The selection of optimal RIB replica ID ( � = 4). 

Fig. 6. The NIBs grouping processing. 
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Eq. (16) can be rewritten as follows: 

| �| ∑ 

i =1 

αi ∑ 

j=1 

(M I B i j .S · M I B i j .dp i 2 ) 

+ 

k ∑ 

j=1 

(RI B j .S · RI B j .dp i 2 ) ≤ ( θT − T 0 ) · E c · T R 

Bit · CR 

(17)

Meanwhile, based on Eqs. (8) and ( 16 ), Eq. (18) can be derived:( | �| ∑ 

i =1 

αi ∑ 

j=1 

MI B i j .S + 

k ∑ 

j=1 

RI B j .S 

) 

· dp i 2 ≤ ( θT − T 0 ) · E c · T R 

Bit · CR 

(18)

Combing Eqs. (13) and ( 18 ), Eq. (19) can be obtained: 

D L + 

⌈
( E c − E L ) · �

E U − E L 
+ 1 

⌉
· D U − D L 

�

≤
√ √ √ √ 

( θT − T 0 ) · E c · T R 

Bit · CR ·
(∑ | �| 

i =1 

∑ αi 

j=1 
M I B i j .S + 

∑ k 
j=1 RI B j .S 

) (19)

Then, � can be approximately solved by Eq. (19) . 

� ≥ D U − D L √ 

( θT −T 0 ) ·E c ·T R 
Bit·CR ·

(| �| ∑ 

i =1 

αi ∑ 

j=1 

M I B i j .S+ 
k ∑ 

j=1 

RI B j .S 

) − D L − ( E c −E L ) ·( D U −D L ) 
E U −E L 

(20)

To minimize the total storage cost of the IB replicas, the value

of � should be minimized too. Solving Eq. (20) , � can be approx-

imately represented below: 

� ≈ D U − D L √ 

( θT −T 0 ) ·E c ·T R 
Bit·CR ·

(| �| ∑ 

i =1 

αi ∑ 

j=1 

M I B i j .S+ 
k ∑ 

j=1 

RI B j .S 

) − D L − ( E c −E L ) ·( D U −D L ) 
E U −E L 

(21)

For example, given a set of transmission images ( �), as-

sume that the total areas of the corresponding MIB s and

the k RIB s are 20 inch 

2 and 5 inch 

2 , respectively. The

minimal and maximal pixel resolutions of an image are:

D L = 20 and D U = 100, respectively. The bandwidth of the wire-

less network ranges from 10 MB/Sec. to 100 MB/Sec., namely,

E L = 10 MB/Sec., E U = 100 MB/Sec., T 0 = 0.1 Sec., θT = 1 Sec., TR = 0.1,

CR = 0.01, Bit = 8. 

Based on Eq. (21) , if the current network bandwidth ( E j ) is

50 MB/Sec., then the optimal value of � is 7. 

3.2.2.3. Optimal ID of RIB replica. In the above, an optimal granu-

larity ( �) has been obtained. Next, how to choose an optimal ID

of each RIB replica among its corresponding � replicas is a critical

issue to study. 

For the non-MUA part of the image, as the lower and upper

bounds of the dpi (i.e., D L , D U ), the ID number of the RIB replica ( i )

and � are met in Eq. (22) . 

D L + 

D U − D L 

�
· i = RIB.dpi (22)

where � is equal to that of in Eq. (21) . 

As i is an integer, solving Eq. (22) , the RIB replica ID can be

approximately derived as: 

i = 

⌈
(RIB.dpi − D L ) · �

D U − D L 

⌉
(23)

Fig. 5 illustrates an example of the selection of optimal RIB

replica where � = 4. To obtain an optimal RIB replica ID, if
 D L + 

D U −D L 
� · i − RIB.dpi | ≤ | D L + 

D U −D L 
� · (i + 1) − RIB.dpi | , then the

ptimal ID of the RIB replica is derived in Eq. (24) : 

 opt = 

⌈
(RIB.dpi − D L ) · �

D U − D L 

⌉
(24)

Otherwise, the optimal ID of the RIB replica is as follows: 

 opt = 

⌈
(RIB.dpi − D L ) · �

D U − D L 

⌉
+ 1 (25)

.3. The M TO algorithm 

With the support of the above enabling techniques, the M to

rocessing of the medical images can be efficiently transferred in

he mobile wireless network environment. Before introducing the

 TO algorithm, a pre-processing step is required. As mentioned in

ection 3.1 , in the preprocessing step, the MUAs of the all images

re first identified [27] and stored in the database. Then, the im-

ges are equally partitioned into some IB (i.e., NIB and MIB ) repli-

as in which the NIB s are stored based on different granularities

nd the MIB s are stored with their original pixel resolutions. 

Generally speaking, in the state-of-the-art image data trans-

ission schemes, a complete image is transferred as an object in

hich the transmission priority of each IB in the image is equal.

hus, it is possible that the important MUAs in the image be dis-

layed later than the non-MUA part. Moreover, for the medical im-

ges with high pixel resolutions, this transmission method, how-

ver, will lead to the increase of the failure in the transmission

rocessing. Once the transmission failure is occurred, the image

eeds to be re-transmitted which results in a higher transmission

ost. To overcome this technical bottleneck and support the robust

ransmission of the large image data, the transmission priority(TP)

f each IB can be defined in Eq. (26) . 

 B i · TP = 

{
1 ; if I B i belongs to MIB 

0 . 5 ; if I B i belongs to RIB 

(26)

According to the different priorities of the IB s, they can be

ransferred in terms of the priority in a descending order, which

ot only ensures the robustness of data transmission but guaran-

ees that the important information can be transferred in advance.

Algorithm 2 summarizes the detailed steps of our proposed

 TO algorithm. As illustrated in Fig. 6 , first of all, when a batch of

mage transmission requests( �) are submitted to the sender node
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Algorithm 2 

M TO ( I S ,U i ). 

Input : �: a batch of transmission images and some parameters, 

U R : user set 

Output : the images transferred 

1. the NIB s are identified and extracted from the images in �; 

2. the NIB grouping processing is conducted to obtain the k RIB s; //see Algorithm 1 

3. the corresponding optimal pixel resolutions of the RIB s are obtained by the ARS scheme; 

4. for each RIB i do // at the sender node 

5. the optimal RIB replica ID is obtained based on Eqs. (24) or ( 25 ); 

6. its transmission priority is defined in Eq. (26) ; 

7. end for 

8. sort the transmission priorities of all IB (i.e., MIB and RIB ) replicas in a descending order; 

9. the IB replicas at the slave node are transmitted to the receiver one based on their transmission priorities; 

10. the MIB s are placed based on their positions (i.e., MIB.pos ) and the corresponding user IDs (i.e., uID ) in priority; 

11. The NIB replicas can be replaced by the corresponding RIB replicas and are placed based on their positions (i.e., NIB.pos ) and the corresponding uID s. 

Fig. 7. A medical image batch transmission system. 
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evel N S from the receiver one N R , their corresponding NIB s are first

dentified and extracted from the images in � (line 1). Then, the

IB grouping processing is performed to obtain the k RIB s (line 2);

fter that, the network bandwidth and the corresponding areas of

he IBs (i.e., MIB s and RIB s), etc., are collected and analyzed to ob-

ain an optimal transmission pixel resolution for the RIB replicas

lines 3–7); in lines 6–8, the transmission priorities of each IB are

ssigned based on Eq. (26) and sorted; next, the IBs at the slave

ode can be sent to the receiver one based on their transmission

riorities in a descending order (line 9); finally, in lines 10–11, once

he IBs are arrived at the receiver node level, the IBs reconstruction

rocessing is required. In this step, the MIB s are placed based on

heir positions (i.e., MIB.pos ) and the corresponding user IDs (i.e.,

ID ) in priority. The NIB replicas can be replaced by the corre-

ponding RIB replicas and are placed based on their positions (i.e.,

IB.pos ) and the corresponding uID s. 

. Results and discussion 

To verify the efficiency of the proposed M TO method, extensive

imulation experiments are conducted to demonstrate the trans-

ission performance. 

The image receiver client has a Qualcomm® Snapdragon 

TM 600

rocessor 1.7 GHz quad-core CPU, and a screen of 5.9 inch with

ull HD 1080p. The client system runs on the Android platform

30] and is implemented with the Java language. The sender node

nd the slave one are connected via 1 Gbps network links. In the

lave node, the IB replicas with different pixel resolutions are

tored in a file system and some structured information is recorded

y the MySQL [31] . Each node has a 2.7 GHz quad-core Xeon pro-
essor, 2.0GB memory, and 1 TB hard disk. The maximum data

ommunication rate is 150 Mbps in the wireless network. 

The medical image datasets adopted are from two ways: 1) real

ataset : 10 0,0 0 0 medical images are downloaded from the medical

mage archive [32] in which the image data size ranges from 100k

o 800k; 2) synthetic dataset : to evaluate the effect of data size on

he image transmission performances, five groups of the medical

mage data have been synthesized in which the data size of each

mage are 1 MB, 5 MB, 10 MB, 50 MB, and 100 MB, respectively. To

bjectively evaluate the M to method, by default, each experiment

uns 5 times to obtain the average values. 

.1. A prototype transmission system 

Fig. 7 shows a prototype system for the multi-transmission op-

imization processing of the medical images. Fig. 7 (a) is an ex-

mple of the backend interface of offline medical image process-

ng. The two MUAs in this figure have been identified by using

wo blue polygon lines. Fig. 7 (b) demonstrates one of the receiver

lients interface in which the IBs have been reconstructed and dis-

layed. Comparing the two figures, it is obvious that: 1) the pixel

esolutions of the MUAs in Fig. 7 (b) keep original; 2) the pixel res-

lution of the non-MUA part in Fig. 7 (b) is significantly lower than

hat of in Fig. 7 (a). 

.2. Effectiveness of the M TO method 

To objectively evaluate the effectiveness of the M TO method and

ompare the image qualities after the image distortion processing,

n the first experiment, a metric called the peak signal to noise ratio
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Fig. 8. Effect of δ ( RIB.dpi = 80 dpi). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Effect of δ on PSNR ( � = 20). 
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(PSNR) [18] is adopted to measure the quality of reconstruction of

the image compression. The signal in this case is the original data,

and the noise is the error introduced by the M TO compression. The

PSNR is an approximation to human perception of reconstruction

quality, represented as follows: 

P SNR = 10 lo g 10 
( 2 

B − 1) 
2 

MSE 
(27)

where MSE refers to mean squared error, denoted as: MSE =
1 

mn 

∑ m −1 
i =0 

∑ n −1 
j=0 [ I(i, j) − K(i, j)] 

2 
; B is the image bits. 

4.2.1. Effect of δ on PSNR 

This experiment studies the effect of δ on the quality of im-

age reconstruction. Fig. 8 illustrates an example of the original im-

age and the reconstruction of the same image based on different

δ and different number of clusters (CNo), respectively. The pixel

resolution of the RIB is fixed that is 80 dpi . It seems that the im-

age reconstruction quality is relatively poor when the granularity

δ is smaller. This is because it is hard to find the correct RIB s to

accurately capture the visual similarity of the other IB s in the cor-

responding cluster when the number of the IB s is getting small,

especially in Fig. 8 (b) and (c). Meanwhile, when δ becomes larger,

the image quality is getting better since it is easy to find the cor-

responding RIB s in the related NIB s which can be effectively rep-

resented by them. It is worth mentioning that although a minor

image distortion occurred after the image reconstruction process-

ing, this will not affect the examining and diagnosis since the im-

age qualities of the MUAs are still kept original. Therefore, there is

a tradeoff among the image quality, the granularity( �) for resolu-

tions and the granularity( δ) for the size of image blocking. 

Furthermore, the two types of image sets (i.e., real images and

synthetic ones) are used to objectively evaluate the effect of δ on

the image reconstruction qualities by using the PSNR . In Fig. 9 ,

with the increase of δ, the PSNR values are first increasing gradu-

ally for both of the two image sets. When δ is larger than 20 × 20,

it seems that their corresponding PSNR values can not increase

anymore. This is because when δ is smaller, it is hard to recon-

struct the original image perfectly since the suitable RIB s are hard

to be obtained due to the small number of the IBs. On the contrary,
hen δ increases, as more IBs are partitioned, so it is relatively

asy to find a suitable RIB to represent all IB s in the corresponding

luster. 

.2.2. Effect of � on PSNR 

Next, this subsection evaluates the effect of � on the image re-

onstruction quality in which δ = 20 × 20 as an optimal one. Sim-

lar to Section 4.2.1 , Fig. 10 shows an example of the original im-

ge and the reconstruction of the same image when δ = 20 × 20

nd � = 5. Suppose that the lower and upper bounds of dpi are

0, 200, respectively. Comparing with Fig. 10 (b) and (c), it seems

hat the resolution of the non-MUA part in image in Fig. 10 (b) is

uch lower than that of in Fig. 10 (c). When the resolutions of the

IB s are larger than 80 dpi, the image reconstruction qualities are

pproximately similar. 

In this experiment, two types of image sets are used mentioned

bove. Fig. 11 shows the effect of RIB.dpi on PSNR with different �,

here δ is fixed (e.g., 20 × 20). From Figs. 11 (a–d), it is interest-

ng to see that with the increase of RIB.dpi , the PSNR values are

rst increasing gradually for both of the two image sets. When

IB.dpi is larger than 80( Fig. 11 (a)), 100( Fig. 11 (b)), 110( Fig. 11 (c)),

nd 125( Fig. 11 (d)), respectively, the variance ranges of their cor-

esponding PSNR values become smaller and the PSNR values can

ot increase anymore. 
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Fig. 10. An example of image reconstruction ( � = 5 and δ = 20 × 20). 

Fig. 11. Effect of RIB.dpi on PSNR with different �. 
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Fig. 12. Effect of number of transmission images. 
.3. Effect of number of transmission images 

This experiment studies the effect of the transmission images

n the performance of the M TO processing by using the above two

inds of image data. The average data sizes for the real and syn-

hetic images are 500 kB and 10 MB, respectively. Before the exper-

ment, a definition of a speedup is obtained: 

peedup = 

T ime f or the m image transmissions 

T ime f or the MT O 

(28) 

Method 1 uses the traditional transmission scheme and method

 adopts the M TO one. As illustrated in Fig. 12 , when the
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Fig. 13. Effect of image size. 

Fig. 14. Effect of network bandwidth. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15. Effect of � on transmission cost. 

Fig. 16. Effect of � on storage cost. 
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bandwidth is relatively stable, the total transmission time using

the M TO is superior to that of the traditional one. Meanwhile, with

the increase of the image data size (i.e., the number of transmis-

sion images), the speedups are significantly larger than one and

increase gradually. Additionally, for the synthetic data, the perfor-

mance gap of the two approaches becomes enlarged when the im-

age size is increasing. The reason is that our proposed hybrid pixel

resolution approach can effectively reduce the transmitted image

data, especially for the large ones. 

4.4. Effect of image size 

This experiment empirically compares the effect of the image

size on the performance of the M TO processing by using the above

two kinds of image data. Method 1 uses traditional transmission

method and method 2 adopts the M TO method. The horizontal axis

means the total data size of the transmission images. The number

of the images is 10. As illustrated in Fig. 13 , when the bandwidth

is relatively stable, the total transmission time using the M TO is su-

perior to that of the traditional one. Meanwhile, with the increase

of the image data size, the performance gap becomes larger. This is

because the data size of the images to be transmitted is increasing

so rapidly that the images cannot be sent to the destination nodes

quickly. Further, for the synthetic data, the performance gap of the

two approaches becomes enlarged when the image size increases.

The reason is that our proposed hybrid pixel resolution approach

can effectively reduce the transmitted image data, especially for

large images. 

4.5. Effect of network bandwidth 

This experiment investigates the effect of the network band-

width on the performance of the M TO processing by using the two

data sets. For the real and synthetic datasets, the average data

sizes of the two kinds of images are 500 KB and 50 MB, respec-

tively. Method 1 uses traditional transmission method and method

2 adopts the M TO . Fig. 14 shows when the image data sizes are

fixed, the total response time using the method 2 is superior to

that of method 1. Meanwhile, with increasing bandwidth, the re-

sponse time decreases gradually and the performance gap becomes
arger especially for the large synthetic image data. This is because

n the M TO , compared with the original image data size, it has been

uch reduced based on the network bandwidth, the image con-

ent, and so on, causing the transmission cost to decrease accord-

ngly. 

.6. Effect of �

This experiment proceeds to test the effect of � on the trans-

ission and storage costs, respectively, by using the two datasets.

he data sizes in the two image sets are same as Section 4.3 . In

ig. 15 , when � ranges from 3(5) to 15(25), the transmission cost

radually decrease; while in Fig. 16 , the storage cost increases with

he increase of �. This is because when � is small, the data size

f each IB replica becomes relatively large. Thus, the transmission

ost becomes higher. Similarly, the total number of the IB replicas

ncreases when � increases, which leads to the larger storage cost.

o, to obtain a tradeoff between transmission cost and storage cost,

n optimal � is critically important to the M TO processing. 

.7. Comparison of transmission efficiency and robustness 

This experiment compares the transmission efficiency and ro-

ustness of the two transmission schemes: 1) our proposed M TO

ethod and 2) the progressive image transmission (PIT) [18] by us-

ng the synthetic dataset. In Fig. 17 (a), when the image data size is

ncreased from 20 MB to 100 MB, the transmission time of the M TO

ethod gradually increases but better than that of the PIT one.

his is because compared with the mixed pixel resolution-based

mage reconstruction of the M TO scheme, the PIT adopts original

esolution to reconstruct the images. The data size to be trans-

erred by the PIT is larger than that of the M TO . 

To evaluate the effect of image size on the transmission robust-

ess, the synthetic image dataset can be used in which the images

ave been divided into five groups in terms of the data size such

s 5 MB, 10 MB, 20 MB, 50 MB, and 100 MB. The transmission ro-

ustness ( TR ) is defined below. 

 R = 

Number of success f ul data transmissions 

T ot al number of dat a transmissions 
(29)
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Fig. 17. Effect of the M TO on TR. 
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As shown in Fig. 17 (b), even with the increase of data size, the

uccessful data transmission ratio (i.e., TR ) remains extremely close

o 100% by using the image blocking technique. For the data trans-

ission without adopting the M TO method, the average TR is de-

reased to 87% at the data size of 20 MB and approaches to zero

hen the data size is larger than 50 MB, since it is hard to trans-

er a complete large image successfully. Based on the experimental

esult, to guarantee a high successful data transmission ratio, it is

ecessary to transfer a large image only through the image block-

ng method in a limited network bandwidth. 

. Conclusion 

The paper presented a multiple transmission optimization

ethod for large medical images called the M TO in resource- con-

traint mobile telemedicine systems. The proposed M TO is specif-

cally designed for the batch transmission of the multiple large

edical images concurrently under low and unstable network

andwidth. Two enabling techniques, namely, NIB grouping scheme ,

nd adaptive RIB replicas selection are proposed to reduce the data

ommunication cost. The experimental studies demonstrate that

he proposed M TO method is more suitable for the multiple medi-

al image transmission in minimizing the network communication

ost and maximizing the parallelism in I/O and CPU. 
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